Ejecta mobility of layered ejecta craters on Mars: Assessing the influence of snow and ice deposits

نویسندگان

  • David K. Weiss
  • James W. Head
چکیده

The unusual lobate ejecta deposits of martian impact craters have led to several proposed fluidization mechanisms to explain their morphology. Of the fluidized ejecta craters, double-layered ejecta (DLE) craters, believed to form in a decameters-thick surface ice layer, appear to have anomalously large and highly variable ejecta mobility (EM) ratios. We propose that low-aspect-ratio layered ejecta (LARLE) craters also form in a decameters-thick surface ice layer, in a manner similar to the formation of DLE craters, and pedestal (Pd) craters. We assess the hypothesis that the anomalously large EM values of DLE and LARLE craters are the result of ejecta flight, emplacement, and sliding of the ejecta on a lubricating ice layer, and that the highly variable EM values are related to variations in surface ice layer thickness. We find that the presence of a variable thickness icy substrate at the time of impact combined with varying coefficients of sliding friction and/or particle size, are consistent with the high values and wide range of EM values observed for these craters: thicker icy substrates lead to greater amounts of atmospheric drag and deceleration of the icy material due to the small fragmentation diameter of ice generated by its low tensile strength. Additionally, the vaporization of ejected icy material and entrainment of the vaporized material in a late-stage vapor plume further reduces the average ejecta velocities. By preferentially decelerating the smaller icy particles and eliminating the vaporized ice material from the ejecta curtain, the highest velocity ejecta is eliminated, and runout distance is decreased. We find that a similar model involving variations in the target structure of a volatile-rich substrate may also explain the formation of single-layered ejecta (SLE) and multiple-layered ejecta (MLE) craters. The lack of ramparts around the outer ejecta facies of craters that form in surface ice (DLE, LARLE) may indicate that ejecta emplaced on surface ice avoids significant deceleration due to the low basal l values, and that ramparts around SLE and MLE craters may be indicative of ejecta deceleration processes. 2014 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation of double-layered ejecta craters on Mars: A glacial substrate model

[1] A class ofMartian impact craters with particularly unusual ejecta characteristics (double-layered ejecta (DLE) craters) are preferentially located in the midlatitudes in both hemispheres of Mars. Unlike today, decameters thick deposits of snow and ice occupied these same latitudes for significant periods during the Amazonian period. We assess the hypothesis that the unusual double-layer mor...

متن کامل

Testing landslide and atmospheric-effects models for the formation of double-layered ejecta craters on Mars

Double-layered ejecta (DLE) craters are distinctive among the variety of crater morphologies observed on Mars, but the mechanism by which they form remains under debate. We assess two ejecta emplacement mechanisms: (1) atmospheric effects from ejecta curtain-induced vortices or a base surge and (2) ballistic emplacement followed by a landslide of ejecta assisted by either surfaceor pore-ice. We...

متن کامل

Crater degradation in the Noachian highlands of Mars_ Assessing the hypothesis of regional snow and ice deposits on a cold and icy early Mars

The presence of valley networks and the highly degraded state of Noachian highland craters has led to the interpretation that Mars was once warmer and wetter. Recent climate models have suggested, however, that the extremely cold climate in the Noachian would be unlikely to support liquid water precipitation. The presence of a thicker atmosphere thermally coupled to the surface is predicted ins...

متن کامل

Role of Volatiles in the Emplacement of Ejecta Deposits around Martian Impact Craters

Introduction: Impact craters are a dominant geological landform on Mars, the most Earth-like planet in the Solar System. The martian impact cratering record is more diverse than for Earth and the other terrestrial planets [e.g., 1]. Of particular interest is the presence of multiple layers of lobate or fluidized proximal ejecta deposits surrounding martian impact craters. These are collectively...

متن کامل

Using martian single and double layered ejecta craters to probe subsurface stratigraphy

Martian craters with fluidized ejecta – including single-layered, double-layered and multiple-layered craters – have been studied extensively, with their formation generally suggested to require some presence of volatiles in the subsurface. However, experimental reproduction of these morphologies, impact modelling, and the occurrence of layered ejecta in putative volatile poor regions suggests ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014